

    
      
          
            
  
The Bluejay Operating System

[image: _images/.build.yml.svg]
 [https://builds.sr.ht/~swisschili/bluejay/commits/.build.yml?]


Bluejay is an operating system inspired by UNIX and early Lisp machines.
Currently it only targets x86. There are no plans to port to other platforms.

This documentation should provide an introduction to compiling, developing, and
using Bluejay.




            

          

      

      

    

  

    
      
          
            
  
Building Bluejay

Bluejay uses the home-grown Jmk build system, which is basically just a GNU
m4 script that generates makefiles from Jmk files — makefiles with some
custom macros.

To build a fresh clone of Bluejay the first thing you will need to do is run
bin/jmk to generate your makefiles for you. You should get some output like
this:

Processing ./boot/initrd/Jmk
Processing ./src/kernel/dri/ata_pio/Jmk
Processing ./src/kernel/dri/ahci/Jmk
Processing ./src/kernel/dri/pci/Jmk
Processing ./src/kernel/Jmk
Processing ./src/mkinitrd/Jmk
Processing ./src/lisp/Jmk





Then just build using src/kernel/Makefile. There are a few additional
targets for your convenience:


	qemu builds and launches the kernel using QEMU’s SeaBIOS


	qemu-iso builds a GRUB ISO and launches using QEMU


	install builds a GRUB ISO and installs it to boot/bluejay.iso


	debug launches kernel in QEMU and launches GDB in the terminal.


	debug-wait launches kernel in QEMU and starts a GDB server on localhost:1234.
This is recommended if you want to debug since you can connect to it from vscode or
any other IDE. .vscode/launch.json is set up to work with this so you can debug
the kernel very easily.




In order to build Bluejay you will need the following dependencies:

gcc gcc-multilib nasm qemu-system-i386 make m4 python3 awk





There are some additional dependencies for building a GRUB ISO but I don’t
remember them at the time of writing.


Common Issues

If when launching Bluejay in QEMU with make qemu you see the message

[ DEBUG ] mb.mods_addr = <whatever>, 0x<whatever>





Followed by a page fault (#PF), your QEMU is out of date. You can either run
the GRUB ISO (with make qemu-iso), which is slower, or upgrade your QEMU to
at least version 6.0.

This is because prior to 6.0 QEMU’s integrated bootloader did not support
multiboot modules. This message is caused by the kernel attempting to read a
module that was loaded incorrectly.





            

          

      

      

    

  

    
      
          
            
  
JMK 2 Build System

JMK2 is a rewrite of the JMK build system. I am slowly porting
Bluejay to JMK2 instead of the legacy M4-based JMK build system.

JMK2 is used to generate makefiles for each project in Bluejay. A
project is a directory with a Jmk2 file (case sensitive). Each
project produces a single output based on some sources.

The script bin/jmk2 looks in the source tree for Jmk2 files,
and process each one into the corresponding Makefile. It accepts
option definitions with the -D flag, eg ./bin/jmk2
-DSOME_OPTION=123. You can also specify the C compiler, assembler,
and linker to use with the -c, -a, and -l flags,
respectively.

Here is an example Jmk2 file:

init hello # hello is the name of the project
srcs hello.c world.c # the source files this project uses
type executable # the preset type of project this is





Each line consists of a command (init, srcs, type) and its
arguments. The commands are documented here:


	
init name [target]

	Initializes the project with a given name. The name is currently
unused, but should be set to a descriptive identifier.

target is the name of the target that the project
generates. By default it is the same as name. For an
executable, this could be hello or hello.exe. For a shared
library, libhello.so, etc.






	
preset preset_name

	Applies the preset preset_name. A preset is a function defined
in the ::presets namespace which makes some changes to the
project state.

These are the default presets:


	freestanding Changes the cflags to build a freestanding binary (without linking the standard library).


	optimize Changes the cflags and asmflags to enable compile-time optimizations.


	32 Tells the compilers to produce a 32 bit build.


	debug Tells the compilers to enable debug information in the resulting builds (enables DWARF symbols).


	warn Enables useful warnings and -Werror.


	nasm Sets nasm as the default assembler.









	
presets preset_a [preset_b]...

	Applies all the given presets in order. Identical to calling
preset once for each argument.






	
cflag string

	Adds string to the ::cflags variable, which will be passed
to the C compiler.






	
cflags string_a [string_b]...

	Adds multiple strings to the ::cflags variable, the same as
calling cflags repeatedly.






	
asmflag, asmflags

	Same as cflag, cflags but for the ::asmflags variable.






	
option name default_value

	If the option name has not been specified when invoking
bin/jmk2, sets the value of the option to
default_value. Options can be read with
::options(option_name).





TODO: finish!




            

          

      

      

    

  

    
      
          
            
  
Architecture

This document seeks to provide a brief overview of Bluejay architecture. This
should be a good starting point for understanding the code.

Bluejay is exclusively a multiboot kernel, it neither provides nor supports
alternative bootloaders.

The bootloader (probably GRUB) will initially run the code in boot.s. This
is where it all begins. This code sets up segmentation and paging and maps the
higher-half of virtual memory (everything above 0xC0000000) to the kernel.
At first it only maps 8 megabytes, more memory can be mapped on request.

After moving to high memory the kernel jumps to C code and enters kmain in
main.c. This is the highest level procedure in the kernel, which sets up
kernel services and drivers one at a time.

This includes VGA, keyboard, and PCI drivers, as well as paging and preemptive
multi tasking.


Multi tasking

Multi tasking is handled by code in task.c. It is first initialized in
init_tasks, which sets up the initial task. Once this is called kernel
threads can be spawned at will.

Every clock tick an interrupt is triggered (see clock.c for timing) which
causes a task switch to occur. Bluejay uses a simple round-robin scheduler, and
there is no way for tasks to voluntarily give up their processing time (even in
the case of blocking IO operations). task.c contains the implementation of
the scheduler.



Drivers

So far drivers must be written either using plain in and out
instructions or on top of the existing PCI driver.


PCI Device Drivers

PCI device drivers must register a struct pci_device_driver in order to
interface with a certain device (or class of devices). See
include/kernel/dri/pci/pci.h for details.

A PCI device driver must pass an instance of this structure to
pci_register_device_driver (in include/kernel/dri/pci/pci.h. If
supports returns true, (for example, if the class and subclass of the
struct pci_device are supported by teh driver) init will be called. At
this point the driver may do whatever it wishes with the PCI device, although
all blocking operations should be done in another thread (using spawn_thread
in include/kernel/task.h for example).






            

          

      

      

    

  

    
      
          
            
  
Bluejay Filesystem

Filesystem drivers are still a work in progress. To test a file system you will
want to create and mount a virtual block device. The makefile in src/kernel
will generate an hd0_ext2.img EXT2 disk image for you automatically. The
default size is 32 megabytes, but you can create your own of any size if you
want. Once the image has been created it will be loaded by QEMU automatically.

In order to write to the virtual hard disk from your host operating system you
should mount it. The make mount command in src/kernel mount the image to
$(BLUEJAY_ROOT)/mnt. If you are using an EXT2 filesystem you should probably
change the owner of that directory once it is mounted so that you can write to
it.


Virtual Filesystem

The Bluejay VFS is heavily inspired by UNIX. It relies on inodes and a tree of
file nodes. The source can be found in src/kernel/vfs.c. This also exports a
very low-level API for dealing with files – including the usual read(),
write(), readdir(), etc – but this should not be used for much longer. A high
level API utilizing file descriptors will be implemented to make this simpler.



Filesystem Drivers

The current filesystem driver(s) available in Bluejay are:


	
	ext2
	
	Read-only support, write support is in progress














Creating a Virtual Drive in QEMU

By default make qemu will load hd0_$(FS).img as the virtual hard drive
for Bluejay. FS defaults to ext2 but can be set in your Jmk.options
to any value. If this file does not exist it will be created using
mkfs.$(FS), ie mkfs.ext2 by default. The default size of the file system
is 35 megabytes, although you can create one of any size manually if you want.
35 megabytes is plenty for testing though.

The make mount command will mount the current virtual hard drive in
$(ROOT)/mnt (where $(ROOT) is the root directory of the Bluejay sources,
not /). This command requires superuser privileges. If you want to give your
(host) user account write permissions use chown -R user:group /path/to/mnt
where user and group are the user and group you want to own the files.

Currently Bluejay ignores file permissions so it doesn’t matter who you set the
owner to.





            

          

      

      

    

  

    
      
          
            
  
Lisp Standard Library

This provides documentation for every built-in function in the Lisp standard
library. It is not auto-generated, please update this documentation if you
change the API in any way.

In general every user-facing API in the standard library should be documented
here.


	(x ...) represents a list x.


	& body means that the rest of the list is represented by body.


	[something] means that something is optional.





Top-level primitives

These are “functions” that can only appear at the top-level of the program. This
means they can’t be nested in any other expressions.


	
(defun function-name (args ...) & body)

	Defines a function function-name that takes args and evaluates
body. function-name is quoted, not evaluated.

(defun say-hi (name)
  (print "Hi, ")
  (print name))

(say-hi "Joe")
; "Hi,"
; "Joe"










	
(defmacro macro-name (args ...) & body)

	defmacro is to macros as defun is to functions. When macro-name
is called, whatever it evaluates to will be compiled.

Note that internally this compiles a function the same way all other
functions are compiled, meaning you can call any lisp function from a
macro definition and it will work as expected.

(defun double (n)
  (+ n n))

(defmacro call-with-4 (whatever)
  (print "this was run at **compile time**")
  (print whatever)
  ;; ``whatever`` expands to the form passed to this macro, in this case
  ;; ``double``.
  (list whatever 4))

(print (call-with-4 double))
; "this was run at **compile time**"
; 'double
; 8











Functions


	
(if condition true-condition [false-condition])

	Evaluates condition, if it is truthy (non-nil) true-condition is
evaluated. Otherwise false-condition is evaluated. If
false-condition is not provided and condition is nil, if
will evaluate to nil.

(print (if (= 2 3)
          "2 = 3"
          "2 /= 3"))
; 2 /= 3










	
(let1 (variable binding) & body)

	Evaluates binding and binds it to variable, then evaluates body.
After body is evaluated variable is unbound.

(let1 (greeting (greet "John"))
  (do-something greeting)
  (print greeting))
; greeting is no longer bound










	
(gc)

	Force the garbage collector (GC) to run.






	
(car pair)

	Return the first item in pair.

(car (cons 'a 'b)) ;=> 'a










	
(cdr pair)

	Return the second (last) item in pair.

(cdr (cons 'a 'b)) ;=> 'b










	
(cons a b)

	Return a cons-pair containing a and b.






	
(print val)

	Print out val to standard output. This will not be formatted as an
s-expression, but in a manner more similar to the internal representation.






	
(list & items)

	Returns a cons-list of items.

(list 1 2 3)
; is the same as
(cons 1 (cons 2 (cons 3 nil)))










	
(quote form)

	Returns form without evaluating it.

'(cons a b)
; or
(quote cons a b)
; is the same as
(list 'cons 'a 'b)










	
(lambda (args ...) & body)

	Creates an anonymous function (closure). This function uses lexical
scope meaning that any free variables (variables bound outside this lambda
definition) are “captured” by the closure. You can call this function with
funcall (to be implemented) or apply.

(let1 (number 3)
  (let1 (adds-number-to (lambda (n)
                          (+ n number)))
    (print (apply adds-number-to '(5)))))
; 8










	
(apply function (args ...))

	Call function with args and return the result. Note that since this
is a Lisp-2 (i.e. functions and variables do not share the same namespace)
you need to pass a function object (i.e. a lambda or quoted function).









            

          

      

      

    

  

    
      
          
            
  
Kernel Logging

Drivers and other kernel components may write log messages to the default output
(currently only VGA since it is the only display target implemented) using
kprintf in include/kernel/log.h. Additional defines in the same file may
help differentiate different types of log messages (i.e. errors, debug
information, etc).

kprintf(OKAY "Something succeeded\n");
kprintf(ERROR "Something failed :(\n");
// etc, see log.h for details








            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          The Bluejay Operating System
        


      


    
  

_static/file.png





_static/minus.png





_static/plus.png





